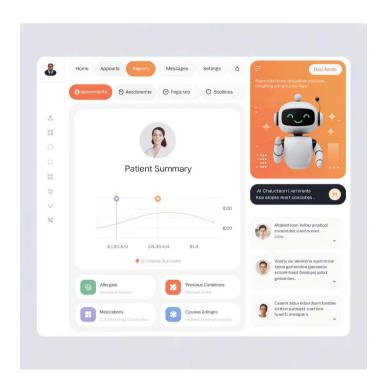
Metodologías Oficiales para Escribir Prompts en Sanidad

Por Adrián Vences Garrido



Introducción

La forma en que escribimos los prompts determina la calidad, seguridad y utilidad de la respuesta de la IA.

En salud, donde hay riesgos éticos y de precisión, contar con metodologías oficiales avaladas por grandes instituciones (OpenAl, Google, Microsoft, AWS, Anthropic) es esencial.

No es solo "pedirle cosas" a la IA, es estructurar una interacción clínica/educativa segura.

Evitar alucinaciones

Información inventada que puede ser peligrosa en contextos médicos

Respuestas reproducibles

Auditables y adaptadas al contexto clínico específico

Mayor alineación

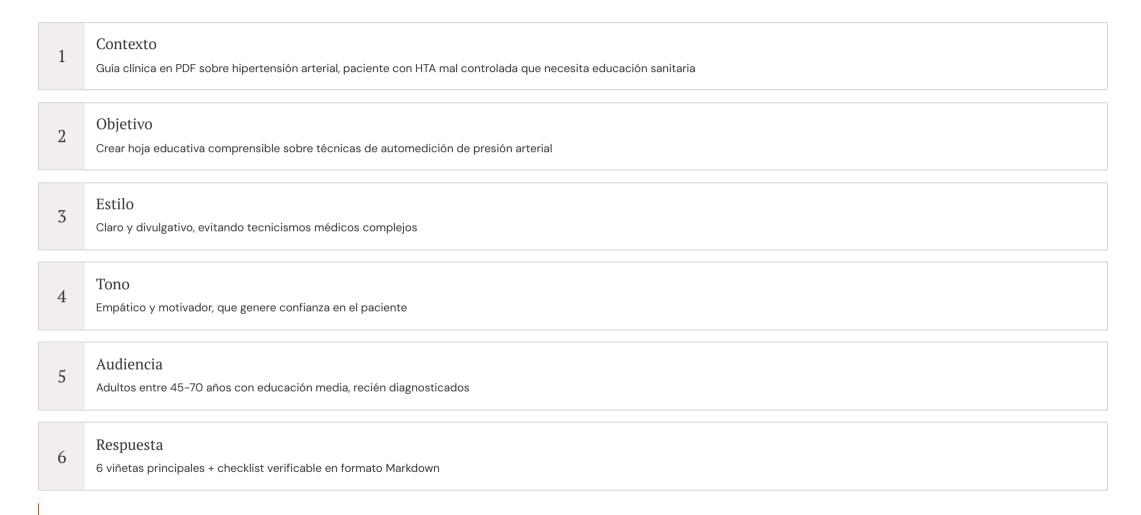
Con guías oficiales y necesidades de pacientes

Principios Generales

Las guías oficiales de OpenAl, Microsoft y Google coinciden en 5 pilares fundamentales:

01	02		03
Claridad y especificidad	Detalles descriptivos		Reforzar instrucciones clave
Evitar ambigüedades que puedan llevar a interpretaciones erróneas	Indicar formato, estilo y proporcionar ejemplos concretos		Repetir los aspectos más importantes para garantizar comprensión
04		05	
Orden lógico		Ruta de salida	
Primero establecer el contexto, luego definir la tarea específica		Pedir "no sé" antes que inventar información inexistente	

Ejemplo en salud: "Resume esta guía en 5 viñetas claras. Si falta información, indica 'no consta'. Formato: lista Markdown."

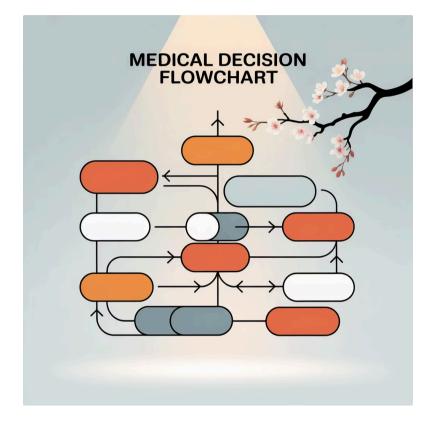

Framework CO-STAR

Una estructura metodológica de 6 pasos que garantiza prompts completos y efectivos:

CO-STAR en Acción: Educación HTA

Resultado: Aporta rigor metodológico, reduce alucinaciones y mejora significativamente la precisión clínica

Cadena de Pensamiento (Chain of Thought - CoT)


¿Qué es CoT?

Instrucción clave: "Piensa paso a paso" → el modelo explica su razonamiento antes de concluir.

Especialmente efectivo en tareas complejas, cálculos médicos y diagnósticos preliminares.

Variantes principales:

- **Zero-shot CoT:** Solo la instrucción de razonamiento
- Few-shot CoT: Incluye ejemplos de razonamiento previo

⊘ Ejemplo en diagnóstico diferencial:

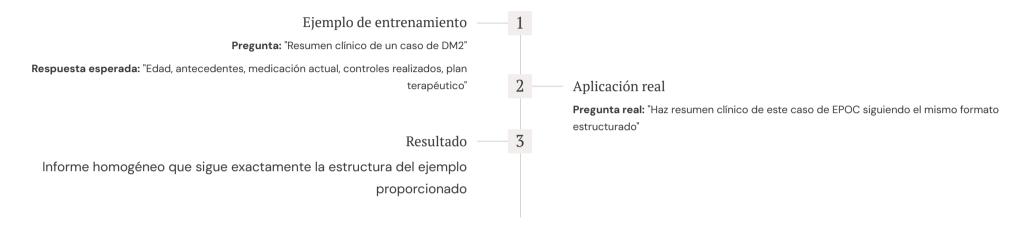
"Analiza paso a paso las causas posibles de tos crónica en paciente de 65 años, y explica qué información adicional falta para orientar mejor el diagnóstico. Si no hay datos suficientes, indica claramente 'faltan datos'."

Few-Shot Prompting

Metodología especialmente recomendada en las guías oficiales de Google Cloud para garantizar consistencia y precisión.

Proporcionar ejemplos

Se dan ejemplos de pregunta + respuesta antes de la consulta real


Imitación de formato

El modelo replica el formato y estilo mostrado en los ejemplos

Mayor precisión

Mejora significativa en precisión y consistencia de respuestas

Few-Shot en Práctica: Informes Clínicos

Aplicaciones prácticas:

- Homogenización de documentos clínicos
- Estandarización de notas de evolución
- Creación de tablas comparativas
- Informes de alta hospitalaria

Recordemos que todos estos formatos solo se pueden aplicar dentro de la **historia clínica electrónica (HCE)**, usando el programa informático propio de la entidad, de esta forma cumpliremos con el **Reglamento General de Protección de Datos (RGPD)**

Framework CLEAR

Funciona como checklist de calidad para validar tanto prompts como respuestas generadas.

Concise

Conciso: Información directa y sin redundancias innecesarias

Logical

Lógico: Estructura coherente y secuencia de ideas clara

Explicit

Explícito: Instrucciones claras y sin ambigüedades

Adaptive

Adaptativo: Flexible según el contexto y necesidades

Reflective

Reflexivo: Incluye autoevaluación y mejora continua

CLEAR en Acción: Material Educativo

Ejemplo práctico de validación de material educativo para pacientes usando el framework CLEAR:

Conciso

Máximo 150 palabras por sección para mantener la atención del paciente

Lógico

Estructura: objetivo → pasos específicos → alertas importantes

Explícito

Señalar incoherencias o información confusa [así] entre corchetes

Adaptativo

Sugerir guías EU/ES específicas si faltan referencias locales

Reflexivo

Proporcionar 3 mejoras concretas y accionables

Framework CARE

Metodología especializada en experiencia de usuario, especialmente útil para interfaces de salud digital.

Contexto

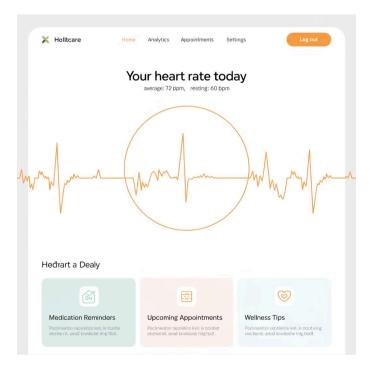
Situación específica donde se aplicará el contenido

Rules (Reglas)

Limitaciones técnicas y restricciones de diseño

Ventajas del Framework CARE:

- Garantiza accesibilidad digital
- Mejora la confianza del usuario
- Reduce errores de interpretación
- Optimiza la experiencia del paciente


Ask (Petición)

Solicitud concreta y específica de lo que se necesita

Examples (Ejemplos)

Muestras concretas del resultado esperado

We use cookies to enhance your experience By continuing to use th tis site, you consent to our cookie policy Accept all Customize cookies Privacy Policy

CARE en Práctica: Banner de Cookies

Aplicación del framework CARE para crear microcopy accesible en sitios web sanitarios:

Contexto

Sitio web de institución sanitaria que debe cumplir RGPD y ser accesible

Ask

Redactar 2 opciones de microcopy para banner de cookies

Rules

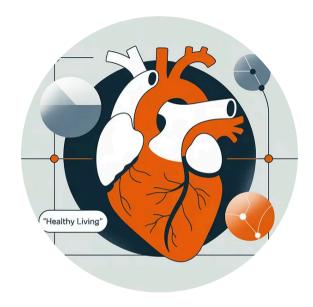
Máximo 60 caracteres, sin dark patterns, lenguaje claro

Examples

2 alternativas justificadas con análisis de usabilidad

 Resultado esperado: Interfaces de salud digital que generan confianza y cumplen estándares de accesibilidad

Guías Específicas por Sector



Programación Médica

Metodología: GitHub Copilot + Microsoft

- Indicar archivos y contexto de código
- Especificar requisitos y tests
- Iterar con correcciones

Ejemplo: "Refactoriza utils/date.ts para usar API Temporal. Añade tests Jest. Documenta breaking changes."

Imagen/Multimedia

Metodología: Google Vertex AI + OpenAI DALL-E

Estructura: tema + composición + estilo + detalles + luz + salida

Ejemplo: "Infografía 1080×1080 sobre 3 pasos del inhalador. Estilo minimal, iconos lineales, fondo claro, exporta PNG."

Salud Clínica

Metodología: CO-STAR + CLEAR

- CO-STAR para estructurar
- CLEAR para validar
- Añadir salida alternativa "consulta médica necesaria"

Comparativa por Contexto

Contexto	Mejor metodología	Razón
Programación	GitHub Copilot + CoT	Precisión en código, razonamiento paso a paso
Salud clínica	CO-STAR + CLEAR	Estructura + checklist de seguridad
Educación	Few-shot + CO-STAR	Ejemplos guían consistencia en materiales
UX / Contenido	CARE	Reglas + ejemplos aseguran accesibilidad
lmagen / multimedia	Vertex AI / OpenAI guías	Control sobre composición y salida
Casos complejos	CO-STAR + CoT	Contexto estructurado + razonamiento lógico

Clave: Cada contexto requiere una aproximación metodológica específica para maximizar efectividad y seguridad

Conclusiones

Escribir prompts en sanidad no es improvisar, es aplicar metodologías oficiales validadas por las principales instituciones tecnológicas.

Cada marco metodológico (CO-STAR, CoT, Few-shot, CLEAR, CARE) aporta valor diferente y son combinables según las necesidades específicas.

Mejoras conseguidas:

Precisión clínica

Respuestas más exactas y alineadas con evidencia científica

Transparencia

Se puede ver y auditar el razonamiento del modelo

Reproducibilidad

Misma entrada → misma salida consistente

En salud, donde cada palabra importa, estas metodologías son garantía de seguridad, calidad y ética.

Referencias

- OpenAl. Best practices for prompt engineering [Internet]. OpenAl; 2024 [citado 9 sep 2025]. Disponible en:
 https://platform.openai.com/docs/guides/prompt-engineering
- Microsoft Azure. Prompt engineering techniques [Internet]. Microsoft; 2024 [citado 9 sep 2025]. Disponible en:
 https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/prompt-engineering
- Google Cloud. Overview of prompt design strategies [Internet]. Google; 2025 [citado 9 sep 2025]. Disponible en:
 https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-design-strategies
- Amazon Web Services. Prompt engineering with the CO-STAR framework [Internet]. AWS; 2024 [citado 9 sep 2025]. Disponible en:
 https://aws.amazon.com/what-is/prompt-engineering/
- Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, et al. Chain-of-thought prompting elicits reasoning in large language models. Adv Neural Inf Process Syst. 2022;35:24824-37.
- Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language models are few-shot learners. Adv Neural Inf Process Syst. 2020;33:1877-901.